## **PSpice with Cadence**

- 1. Creating Circuits
- 2. AC Analysis
- 3. <u>Step Response</u>
- 4. Dependent Sources
- 5. Variable Phase VSin Source

# **Creating Circuits**

Select 'Start  $\rightarrow$  Engineering  $\rightarrow$  Cadence  $\rightarrow$  Capture' from the start menu.



When this dialog box appears, select Allegro PCB Design CIS XL

Select 'File  $\rightarrow$  New  $\rightarrow$  Project' in the menu bar.

| New Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name         example1         Create a New Project Using         Image: Im | OK<br>Cancel<br><u>H</u> elp<br>Tip for New Users<br>Create a new Analog or<br>Mixed A/D project. The<br>new project may be blank<br>or copied from an existing<br>template. |
| Location<br>H:\My Documents\PSpice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BIowse                                                                                                                                                                       |

Type **example1** in the **Name** field, select the **Analog or Mixed A/D** project type, set the location to **H:\My Documents\PSpice**, and click **Ok**.

| Create PSpice Project                   |                        |
|-----------------------------------------|------------------------|
| O Create based upon an existing project | ОК                     |
| AnalogGNDSymbol.opj                     | Browse                 |
| ⊙ Create a <u>b</u> lank project        | Cancel<br><u>H</u> elp |

Select Create a blank project and click Ok. The Schematic Editor will open



Once the Schematic Editor opens, select the **Place Part** tool on the right sidebar, and click the **Add Library** button. In the file dialog that appears, select the **source** library.

| Allegro Design Entry CIS - [/ - (SCHEMATIC1 : PAGE1)]             |                |                       |                               |
|-------------------------------------------------------------------|----------------|-----------------------|-------------------------------|
| Bile Edit View Tools Place Macro PSpice Accessories Options Windo | w <u>H</u> elp |                       | cādence – ⊲×                  |
| 🕒 🗁 🖶 🕁 V 🗈 🖻 🥱 🦿                                                 | ✓ ④            |                       | 🔽 🛤 💌 🕘 🕟                     |
|                                                                   | <b>F</b> (2)   |                       |                               |
|                                                                   |                | 11 0 11               |                               |
|                                                                   |                | u w tr                |                               |
| 🗊 example1 🔛 PAGE1                                                |                | Place Part            |                               |
|                                                                   | abc            |                       | * <b>Q</b> (4)                |
| · · · · · · · · · · · · · · · · · · ·                             | L              | Part List             | 7                             |
|                                                                   | 1. 🔶           | STIM8                 | ~                             |
| E                                                                 |                | VAC<br>VDC            |                               |
| D                                                                 | ÷ 🖪            | VEXP<br>VPULSE        |                               |
|                                                                   |                | VPWL<br>VPWL ENH      |                               |
|                                                                   |                | VPWL_F_RE_FOREVE      | ER 💌                          |
|                                                                   | ц. 🗙           | Lįbraries:            | <b>M</b> X                    |
|                                                                   |                | Design Cache          | ·                             |
|                                                                   |                | SOURCE                |                               |
|                                                                   | ∩ abc          |                       |                               |
| с                                                                 | N 0            |                       |                               |
|                                                                   |                | •                     | Packaging<br>Parts per Pkg: 1 |
|                                                                   |                | \ <u>↓</u> ∨?         | Part                          |
|                                                                   |                |                       |                               |
| × · · · · · · · · · · · · · · · · · · ·                           |                |                       | Type. Homogeneous             |
|                                                                   |                |                       |                               |
|                                                                   |                | Normal <u>Convert</u> |                               |
|                                                                   |                | - seaicritor Part     |                               |
| 0 items selected                                                  | 1              | Scale=                | -100% X=2.30 Y=0.10           |

In the **Part List**, select the part 'VDC' and then click the **Place Part** button or hit **enter**. Place the part by clicking in the schematic, and then press escape to stop placing DC sources. Double click on the text **OVdc** to change the voltage, set it to **10Vdc** 



Construct this circuit by selecting the **analog** library and placing two resistors, which appear in the part list as **R**. Rotate one of them by pressing the '**r**' key while placing it. Connect it all together by selecting the **Place Wire** tool and clicking on the points to be connected.

| Place Ground                                                     |                                      |                                                       |
|------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|
| Symbol:<br>0<br>\$D_HI<br>\$D_LO<br>0<br>Libraries:              | - <u>0</u>                           | OK<br>Cancel<br>Add Library<br>Remove Library<br>Help |
| CAPSYM<br>Design Cache<br>SOURCE<br>Use 0/CAPSYM symbol to place | <u>N</u> ame:<br>0<br>ce a dc ground |                                                       |

In order to simulate a circuit, PSpice needs a ground node attached to it. Select the **Place Ground** tool in the toolbar. Be warned that there are multiple libraries providing the '**0**' symbol. Select the '**Source**' library before selecting the '**0**' symbol, then click **Ok**.

|    |    |      |   |     |                | : | i, | R1 | ł |  |  |   |    |  |
|----|----|------|---|-----|----------------|---|----|----|---|--|--|---|----|--|
|    |    |      |   |     |                |   |    | 1k | Y |  |  | ] |    |  |
|    |    |      |   | Ś   | л <sup>і</sup> |   |    |    |   |  |  |   |    |  |
| j1 | ΟŅ | łdje | 4 |     |                |   |    |    |   |  |  | ş | Ŕ2 |  |
|    |    |      | 1 | T : |                |   |    |    |   |  |  | ſ | 1k |  |
|    |    |      |   |     |                |   |    |    |   |  |  |   |    |  |
|    |    |      | _ |     |                |   |    |    |   |  |  |   |    |  |
|    |    |      | 1 | 0   |                |   |    |    |   |  |  |   |    |  |

Place the ground symbol in the schematic and connect it to the circuit

| Display Properties                                                                                                                       |                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Name: Value<br>Value: 4k                                                                                                                 | Font<br>Arial 7 (default)                                                                 |
| Display Format         ○ Do Not Display         ○ Value Only         ○ Name and Value         ○ Name Only         ○ Both if Value Exists | Color           Default         ▼           Rotation         0°         180°         270° |
| ОК                                                                                                                                       | Cancel <u>H</u> elp                                                                       |

Double click the resistance value of the horizontal resistor, and set it to '4k'.

| Place Net Alias                     |                   | ×            |
|-------------------------------------|-------------------|--------------|
| <u>A</u> lias:<br><mark>Vout</mark> |                   | OK<br>Cancel |
| Color<br>Default                    | Rotation          | <u>H</u> elp |
| Font<br>Change Use Default          | Arial 7 (default) |              |

It is important to name the nodes you want to plot so that you can find them easily. Select the **Place Net Alias** tool, enter the name **Vout** and click **Ok**.



Place the alias between the two resistors

| New Simulation             | ×      |
|----------------------------|--------|
| Name:                      | Create |
| example1                   | cicate |
| Inherit From:              | Cancel |
| none 💌                     |        |
| Root Schematic: SCHEMATIC1 |        |

Click the **New Simulation Profile** button to configure the simulation. Enter the name 'example1' in the dialog that appears and click **Create**.

| Simulation Settings - exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ple1 🔀                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General       Analysis       Configuration         Analysis type:       Imme Domain (Transient)       Imme Domain (Transient)         Options:       Imme Domain (Transient)       Imme Domain (Transient)         Imme Domain (Transient)       Imme Domain (Transient)       Imme Domain (Transient)         Imme Domain (Transient)       Imme Domain (Transient)       Imme Domain (Transient)         Imme Domain (Transient)       Imme Domain (Transient)       Imme Domain (Transient)         Imme Domain (Transient)       Imme Domain (Transient)       Imme Domain (Transient)         Imme Domain (Transient)       Imme Domain (Transient)       Imme Domain (Transient)         Imme Domain (Transient)< | on Files Options Data Collection Probe Window     Bun to time: 1000ns seconds (TSTOP)   Start saving data after: 0 seconds     Iransient options   Maximum step size: seconds   Skip the initial transient bias point calculation (SKIPBP)     Bun in resume mode   Output File Options |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK Cancel Apply Help                                                                                                                                                                                                                                                                    |

This will bring up the **Simulation Settings** dialog. Click **Ok** to accept the default settings.



Click on the **Voltage/Level Marker** button and place the marker on **Vout** as shown. Click the **Run PSpice** button.



The simulation results will appear as shown, with the voltages at all probes plotted. Close this window now, and return to the schematic.



If the **Enable Bias Voltage Display** button is not already selected, click it. Voltage markers should appear at every node of the schematic as shown.

Now turn off the **Bias Voltage Display** and enable the **Bias Current Display**. Cadence will display the DC current through the circuit as shown.

## AC Circuit Analysis

#### **Transient Analysis**



Create a new project and assemble the circuit shown. The voltage source is part '**VSIN**' in the '**SOURCE**' library.

| Simulation Settings - tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General       Analysis       Configuration         Analysis type:       Time Domain (Transient)       Image: Configuration         Options:       Image: Configuration       Image: Configuration         Image: Configuration       Image: Configuration       Image: Configuration <td< td=""><td>on Files       Options       Data Collection       Probe Window         <u>B</u>un to time:       20us       seconds (TSTOP)         Start saving data after:       0       seconds         Iransient options      </td></td<> | on Files       Options       Data Collection       Probe Window <u>B</u> un to time:       20us       seconds (TSTOP)         Start saving data after:       0       seconds         Iransient options |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OK Cancel Apply Help                                                                                                                                                                                   |

Configure the simulation with the **New Simulation Profile** button and enter the name '**tran**'. Set the **Analysis type** to '**Time Domain (Transient)**', the run time to **20us** and the maximum step size to **100ns.** 



Place voltage markers on each side of the resistor. Name the nodes **Vin** and **Vout**. Run the simulation and the results window should appear. Click the **Toggle Cursor** button and left click the colored dot for **Vout** in the legend. Use the mouse to drag the cursor over to the second peak of **Vout** and note the amplitude. It should be 3dB smaller than the peak voltage of **Vin** (0.707V). Click on the **Mark Label** button to label the point.



#### **AC Analysis**

Close the simulation and modify the circuit, replacing the **VSIN** source with a **VAC** source. Leave the new source with the default attributes. Configure a new simulation profile with name **AC**. Set the analysis

type to **AC Sweep/Noise**, the sweep type to **Logarithmic**, the frequency range from **1-1000000**, and the points/decade to **10**.

| Simulation Settings - AC |                                                                                                                            |                                                                                                                                                  |     |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Simulation Settings - AC | Files Options Data Col<br>AC Sweep Type<br>Linear<br>Logarithmic<br>Decade<br>Noise Analysis<br>Enabled Out<br>I/V<br>Inte | lection Probe Window          Start Frequency:       1         End Frequency:       1000000         Points/Decade:       10         put Voltage: |     |
|                          | Controlled sources                                                                                                         | as point information for nonlinear<br>and semiconductors (.OP)                                                                                   |     |
|                          | ок с                                                                                                                       | Cancel <u>Apply</u> H                                                                                                                            | elp |

Creating a new simulation profile deletes the preexisting voltage markers, so re-add one on **Vout** and run the simulation.



Click the Add Trace button and select Plot Window Templates from the Functions or Macros dropdown menu. Select V(Vout) on the left and Bode Plot dB – dual Y axes(1) on the right, then click Ok.

| Add Traces                                                                  |                     |                                                                                                                                 |
|-----------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Simulation Output Variables                                                 |                     | Eunctions or Macros                                                                                                             |
| ×                                                                           |                     | Plot Window Templates 🛛 🗸                                                                                                       |
| Frequency<br>I(C1)<br>I(C1:1)                                               | Analog              | 3dB Bandwidth - Band pass [multi-run][1<br>3dB cut-off frequency - High pass [multi<br>3dB cut-off frequency - Low pass [multi- |
| I(B1)<br>I(B1:1)<br>I(V1)<br>I(V1)+)                                        |                     | Admittance(1,2)<br>Average(1)<br>Bode Plot - dual Y axes(1)<br>Bode Plot - separate(1)                                          |
| V(0)<br>V(C1:1)<br>V(C1:2)                                                  | ✓ Currents ✓ Power  | Bode Plot dB - dual Y axes(1)<br>Bode Plot dB - separate(1)<br>Conductance(1,2)                                                 |
| V(R1:1)<br>V(R1:2)<br>V(V1:+)                                               | Nojse (V²/Hz)       | Current Gain(1,2)<br>DC Current Gain(1,2)<br>DC Voltage Gain(1,2)                                                               |
| V(V1:-)<br>V(Vin)<br>V(Vout)                                                | Subcircuit Nodes    | Derivative(1)<br>Falltime of Step Response [multi-run](1)<br>First Peak [multi-run](1)                                          |
| V1(C1)<br>V1(R1)<br>V1(V1)<br>V2(C1)<br>V2(R1)<br>V2(V1)<br>V2(V1)<br>V(C1) | 25 variables listed | Fourier Transform[1]<br>Impedance(1,2)<br>Integral(1)<br>Log-Linear(1)<br>Log-Log(1)<br>Nyquist Plot(1)                         |
| Full List                                                                   |                     |                                                                                                                                 |
| Irace Expression: Bode Plot dB - dual Y axes(V(Vout))                       |                     | <u>OK</u> <u>C</u> ancel <u>H</u> elp                                                                                           |



You should see a plot similar to this one. The green trace shows phase and the red trace shows magnitude. Use the cursor to find the point where the phase hits -45, and label it.



Find and mark the point where the magnitude is -3dB.

### Step Response

To simulate a step response, create a new project and perform a transient analysis using the same steps as above, but with a **VPULSE** voltage source. The **VPULSE** source has 7 parameters affecting the waveform.



V1 = First Voltage V2 = Second Voltage TD = Initial Delay TR = Absolute Rise Time TF = Absolute Fall Time PW = Pulse Width PER = Period

To simulate a step response, we use a **VPULSE** source set to V1=0V, V2=1V, TD=0, TR=1ps, TF=1ps, PW=1s, and PER=2s. A 1 picosecond rise/fall time is extremely small with regard to the simulation time, so it closely approximates the ideal step function.



### **Dependent Sources**

The ANALOG library provides four dependent sources:

• E – Voltage Controlled Voltage Source



• F – Current Controlled Current Source



• G – Voltage Controlled Current Source



• H – Current Controlled Voltage Source



### Variable Phase VSin Source

The phase isn't displayed on the schematic for the **VSIN** source, but it can be added. Double-click on it to bring up the property editor. Find the '**PHASE**' field and select it, then click the '**Display...**' button. Select **Name and Value** from the **Display Format** list, then click **Ok**.

The '**PHASE'** property is now displayed on the schematic, and can be moved and edited the same as the default properties.